

Анализатор сети

Инструкция по эксплуатации

версия 2.9 (FW версия 6.8 и новее)

ETI, d.o.o. Obrezija 5 SI-1411 Izlake 1. Лицевая панель управления и клеммы подключения

Рис. 1. Лицевая панелы

- кнопка SET для входа в меню и сохранения установленных параметров

ESC

кнопка для передвижения вверх по меню и изменения параметра

– кнопка для передвижения вниз по меню и изменения параметра в меньшую сторону

– кнопка ESC для отмены или возврата

Рис. 2. Клеммы подключения

2. Описание прибора

Анализатор сети ENA33LCD предназначен для контроля электрических параметров в трехфазных или однофазных сетях низкого и среднего напряжения. Анализатор ENA33LCD сконструирован на базе быстрого 16-ти битового микропроцессора, который обеспечивает точные измерения с выборкой 128 значений за период по каждой фазе. Прибор за период оцифровывает истинные среднеквадратичные значения по напряжению и току в трехфазной сети.

> 10 periods sampling 10 periods sampling 10 periods sampling

Значения на дисплее обновляются каждую секунду.

Параметр	L1	L2	L3	Σ	мин	макс	Пределы измерения	Пределы отображения	Точность
Фазное напряжение, L – N	٠	٠	٠		٠	•	0 300 B AC	0 180 кВ	±0,5 % MR
Линейное напряжение, L – L	•	•	٠		•	•	0 520 B AC	0 312 кВ	±0,5 % MR
Частота сети	•					•	40 70 Гц	40 70 Гц	±50 мГц
Сила тока	•	٠	٠			•	0,01 6 A	0 7,5 кА	±0,5 % MR
Ток в нейтрали, N				٠		•	-	0 7,5 кА	±1,5 % MR
Коэффициент мощности				•		•	0,01инд 0,01емк.	0,01инд 0,01емк.	±1,0 % MR
cosφ	•	٠	٠			•	0,01инд 0,01емк.	0,01инд 0,01емк.	±1,0 % MR
Гармоническое искажение по напряжению, THDU	•	٠	٠			•	0 99,9%	0 99,9%	±5 %
Гармоническое искажение по току, THDI	•	٠	٠			•	0 99,9%	0 99,9%	±5 %
Нечетные гармоники по напряжению (1 - 19) в %	•	٠	٠			•	0 99,9%	0 99,9%	±5 %
Нечетные гармоники по току (1 - 19) в %	•	٠	٠			•	0 99,9%	0 99,9%	±5 %
Полная мощность, S	•	•	٠			•	0 1,8 кВА	0 999 MBA	±0.8 %
Активная мощность + / - , Р	•	٠	٠			•	0 1,8 кВт	0 999 МВт	±0.8 %
Реактивная мощность + / - , Q	•	•	٠			•	0 1,8 кВар	0 999 MBap	±1.0 %
Полная мощность, суммарная S				٠		•	0 5,4 кВА	0 999 MBA	±0.8 %
Активная мощность + / - , суммарная Р				٠		•	0 5,4 кВт	0 999 МВт	±0.8 %
Реактивная мощность + / -, суммарная Q				٠		•	0 5,4 кВар	0 999 MBap	±1.0 %
Активная энергия + / -				•		•	0 9 999 999 кВт•ч	0 9 999 999 кВт•ч	Класс 0,5*
Реактивная энергия (индуктивная) + / -				•		•	0 9 999 999 кВар∙ч	0 9 999 999 кВар•ч	Класс 0,5*
Реактивная энергия (емкостная) + / -				•		•	0 9 999 999 кВар•ч	0 9 999 999 кВар•ч	Класс 0,5*

Таблица 1. Измеряемые и отображаемые параметры

* для идеальной синусоидальной кривой напряжения и тока

3. Установка

ENA33LCD подготовлен для настенного монтажа в распределительном щите. Вырез панели должен быть около 92х92 мм для осуществления легкой установки. ENA33LCD крепится к стенке щита двумя зажимами, которые расположены снизу и сверху на устройстве.

Рис.3. Габаритные размеры

Для обеспечения хорошей вентиляции прибор должен устанавливаться вертикально. Необходимо обеспечить пустое пространство не менее 50 мм сверху и снизу, а также 20 мм по бокам.

4. Подключение устройства

Величина и тип напряжения питания должны использоваться такие же, как указано на заводской этикетке. По умолчанию напряжение питания 230 В АС 50 Гц (+10%, -15%).

Подключение к измеряемой и питающей цепи по напряжению должно осуществляться через автоматический выключатель или предохранитель (2-10А), который размещают вблизи анализатора для осуществления легкого доступа.

Токовые входы должны быть подключены через трансформатор тока ../5А или ../1А.

Рис.6. Измерение в однофазной сети

4.1. RS485 интерфейс

Прибор может быть оснащен оптически изолированным интерфейсом RS485 и протоколом Modbus RTU. Интерфейс RS485 прибора ENA33LCD не входит в стандартную комплектацию, поэтому преобразователь или другой прибор, используемый в качестве шлюза, должен иметь блок питания для шины RS485. Подробное подключение смотрите в главе 4.

Рис.7. RS485 соединение с интерфейсом

Внимание

На каждом конце шины RS485 установлен нагрузочный резистор 120 Ом.

5. Быстрый ввод в эксплуатацию

Настройка параметров анализатора ENA33LCD очень проста, однако есть перечень параметров, которые необходимо настроить под различные применения. Для быстрого ввода в эксплуатацию анализатора ENA33LCD следуйте инструкции ниже.

- 1. Подключите прибор согласно схеме на рисунке 4, 5 или 6.
- 2. Подключите питание к прибору (тип и уровень напряжения должны соответствовать этикетке на задней стороне прибора).
- 3. Нажмите кнопку SET и удерживайте в течение 5 секунд. После этого прибор войдет в меню настройки.
- 4. Войдите в меню P_1 с помощью нажатия на кнопку SET.
- 5. Настройте коэффициент трансформации в параметре Utr, в случае использования трансформатора напряжения. Для перемещения по меню используйте кнопку ▲. Кнопка SET сохраняет выставленное значение параметра. Для изменения значения используйте кнопки ▲ (+) и ▼ (-). Новое значение параметра подтвердите нажатием на кнопку SET.
- 6. Настройте коэффициент трансформации тока в параметре Itr. Для изменения значения используйте кнопки ▲ (+) и ▼ (-). Новое значение параметра подтвердите нажатием на кнопку SET.
- 7. Нажмите кнопку ESC для закрытия меню настроек P_1. Повторным нажатием на кнопку ESC прибор вернется в обычный режим отображения.

6. Настройка параметров

Настройка анализатора сети ENA33LCD разделено на три меню. Для входа в режим настройки нажмите кнопку SET и удерживайте ее в течение 5 секунд. После этого на экране появится следующее изображение.

Для передвижения по меню используйте кнопки \blacktriangle и \blacktriangledown . Кнопка \blacktriangle используется для цикличного передвижения по меню. Настройка параметров активизируется при помощи нажатия на кнопку SET. Для изменения настроек параметров используйте кнопки \blacktriangle и \blacktriangledown , кнопкой SET подтвердите новое значение параметра. Кнопка ESC отменяет настройку или возвращает в меню выше, также возвращает к режиму измерений.

Параметр	Описание	Заводские настройки	Пределы настройки
P_1	главное меню настроек	•	•
P_2	настройка параметров связи	•	•
AL	настройка сигнализации	•	•

Таблица 3. Меню настройки

6.1. Главное меню настроек – меню Р_1

В главном меню настроек можно установить важные параметры для корректной работы анализатора сети ENA33LCD. В таблице 4, представлен перечень параметров доступных в меню **P_1**. Для перемещения по меню используйте кнопку ▲. Нажатием кнопки **SET** вы войдете в настройку параметра, где кнопками ▲ и ▼ можете изменить его значение. Новое значение параметра подтвердите нажатием на кнопку **SET**. Кнопка **ESC** отменяет введенное изменение и сохраняет первоначальное значение настройки.

Параметр	Описание	Настройки по умолчанию	Пределы настроек
Utr	коэффициент трансформации напряжения	1	1 1500
ltr	коэффициент трансформации тока	1	1 1500
In	настройка 1 -го выхода / входа	In	In, Out, PuL, AL
In	настройка 2 -го выхода / входа	In	In, Out, PuL, AL
t_A	время расчета среднего значения максимального потребления		1 60 мин
C_A	настройка метода измерения максимального потребления мощности и тока		S_A, F_A
Y	внутренний календарь – установка года 20	9	9 99
П	внутренний календарь – установка месяца	1	1 12
d	внутренний календарь – установка дня	1	1 31
h	внутренние часы – установка часа	0	0 23
П	внутренние часы – установка минут	0	0 59
ПА	максимальные значения измеряемых параметров	OFF	OFF / On
SoF	Версия прошивки прибора	-	-
ΠCL	сброс вех максимальных и минимальных значений	-	-

6.1.1. Utr – коэффициент трансформации напряжения

Если используется трансформатор напряжения, то схема подключения указана на Рис.5. Для корректной работы, если есть трансформатор напряжения, необходимо знать точный коэффициент трансформации. Если трансформатор напряжения не установлен и напряжение напрямую подключено к клеммам, выставляемое значение – 1.

Важно знать какой коэффициент будет устанавливаться. Например, если первичное напряжение 6000В, а вторичное напряжение 100В, то выставляемое значение должно быть 60.

6.1.2. Itr – коэффициент трансформации тока

Важно знать какой коэффициент будет устанавливаться. Например, если первичный ток 50А, а вторичный ток 5А, то выставляемое значение должно быть 10.

Внимание

Измеряемые границы токовых входов от 10 мА до 5 А. Максимальный трансформатор тока – 7500/5 А

6.1.3. Конфигурация входа / выхода

Анализатор оборудован двумя клеммами входа/выхода. Принцип работы клемм можно полностью запрограммировать. По умолчанию клеммы установлены в режиме входа. В меню **P_1** настройка клемм входа/выхода осуществляется третьим и четвертым параметрами. Настройка представлена кратким состоянием и символом **K**₁ для входа/выхода №1 и символом **K**₂ для входа/выхода №2.

Каждый вход/выход может быть установлен независимо друг от друга. Пример комбинации подключения представлены на Рис.8. Полярность напряжения изменяется в зависимости от использования входа или выхода. Внимательно проверьте этикетку устройства.

Prog

Рис.8. Подключение входов и выходов в ENA33LCD

ENA33LCD может работать как счетчик электроэнергии с импульсным выходом. Импульсы могут быть представлены любой измеряемой энергией, потребленной или генерируемой. После выбора выходного импульса **PuL**, во второй строчке выбираем требуемый источник энергии. Последний шаг – определить величину выходного импульса заданного в третьем столбце. Величина определена границами от 1 ... 500 кВтч.

Параметр	Описание	Заводские установки	Пределы установки
In	вход управляемый через ПК	-	-
Out	выход управляемый через ПК	-	-
PuL	импульсный выход – активная энергия потребления	1	1 500 Втч
PuL	импульсный выход – реактивная индуктивная энергия потребления	1	1 500 Варч
PuL	импульсный выход – реактивная емкостная энергия потребления	1	1 500 Варч
PuL	импульсный выход – активная энергия генерируемая	1	1 500 Втч
PuL	импульсный выход – реактивная индуктивная энергия генерируемая	1	1 500 Варч
PuL	импульсный выход – реактивная емкостная энергия генерируемая	1	1 500 Варч
AL	Сигнализационный выход	-	раздел 6.3

Таблица 5. Настройка положения Входа / Выхода

6.1.4. Настройка тока и мощности потребления

Анализатор сети ENA33LCD оснащен функцией максимального потребления по каждой фазе, трехфазного потребления полной мощности и трехфазного потребления активной мощности. Для функции максимального потребления задается время расчета среднего значения – параметр **t_A**, который может быть задан от 1 до 60 минут.

Другой параметр С_А определяет метод для расчета потребления.

Параметр	Настройка	Описание
C_A	S_A	статическое окно времени расчета среднего значения в соответствии с параметром t_A
	F_A	динамическое окно времени расчета среднего значения в соответствии с параметром t_A

6.1.5. Внутренний календарь и часы

Версии анализаторов сети ENA33LCD с портом связи оборудованы внутренними часами реального времени и календарем. Настройка времени и даты доступна в меню настроек. Редактирование параметров осуществляется с помощью двух экранов.

Передвигая указатель на параметр кнопкой ▼ и нажимая кнопку SET, войдете в настройки. Первый экран отображает настройку даты (Год/Месяц/День) и после нажатия кнопки ▲ отобразится второй экран – настройка времени (Часы/Минуты).

6.2. Второе меню (меню параметров связи) – Р_2

Второе меню Р_2 – группа параметров для настройки порта связи, частоты сети и возврата к заводским настройкам.

Параметр	Описание	Заводские установки	Пределы установки
ld	идентификационный номер прибора в сети RS485	0	0 255
bd	скорость передачи данных	9,6	9,6 / 19,2 / 38,4 / 57,6 / 115 kBd
PAr	контроль четности		(none), _o_ (odd), _E_ (even)
St	стоповый бит	1	1/2
Fr	частота сети	50 Гц	50 / 60 Гц
PAS	пароль		любое число в диапазоне 001 – 999
bcL	подсветка дисплея	On	On, OFF, 30 300 секунд
cnt	контраст дисплея	100%	30 100%
rES	возврат к заводским настройкам		
S_П	информация о выполнении записи в память*	Off	On – выполняется запись
S_P	информация о последнем включенном профиле*	Off	On – выполняется запись

6.2.1. Порт связи RS485

Прибор может быть оборудован портом связи для подключения к ПК или к другим устройствам. В меню параметров P_2 есть возможность определить параметры порта связи RS485, которые описаны в таблице 6.

Id – идентификационный номер прибора – уникальный номер в сети RS485. bd – скорость связи определяет скорость передачи данных между анализатором ENA33LCD и ПК. Par – контроль четности по умолчанию отключен и может быть изменен на четный (_E_) или нечетный (_o_).

Скорость связи и контроль четности должны быть одинаково настроены на одинаковые значения как в приборе, так и в преобразователе RS485.

6.2.2. Настройка частоты сети

Чтобы гарантировать лучшую работу и точность измерения по умолчанию установлена частота сети 50 Гц. Тем не менее анализатор рассчитан на работу и в сетях с частотой 60 Гц. Для получения правильных измерений от анализатора ENA33LCD установите частоту согласно вашей сети, редактируя параметр Fr.

Внимание

Частота сети должна быть изменена только в тех случаях, когда рабочая частота сети 60 Гц. По умолчанию значение в 50 Гц соответствует большинству сетям во многих странах в мире.

6.2.3. Настройка пароля

Прибор возможно защитить от несанкционированного доступа с помощью трехзначного пароля. Вход в параметр **PAS** и активация настройки пароля с помощью кнопки **SET** открывает значение первого числа пароля. Кнопкой ▲ выберите нужную первую цифру числа, нажатием на кнопку ▼ перейдите на следующую цифру пароля. Подтверждение пароля осуществляется нажатием кнопки **SET**. Удалить пароль можно с помощью установки 000.

6.2.4. Настройка подсветки дисплея

Подсветку дисплея можно осуществить таким образом, чтобы обеспечить наилучшую производительность в соответствии условиям освещения в месте установки. Контрастность дисплея регулируется параметром **cnt** от 30% ... 100% с шагом 10%. Также есть возможность установить режим работы подсветки. Подсветку можно включить постоянно, отключить или активировать только на определенное время с помощью параметра **bcL**. Регулирование от 30 ... 300 сек, с последней активацией на клавиатуре.

Для обеспечения безопасной работы и уменьшения внутреннего самонагрева, дисплей выключится по истечении установленного времени.

6.2.5. Возврат к заводским настройкам

Присутствует возможность сброса всех параметров с возвратом к заводским настройкам. В меню параметров связи доступен параметр **rES**. После нажатия кнопки **SET** на выбранном данном параметре, прибор удаляет все настройки за исключением часов и календаря, затем прибор вернется к заводским настройкам.

Важно

После возврата к заводским настройкам, все пользовательские настройки удалятся. Необходимо заново вводить коэффициент трансформации напряжения и тока.

6.3. Меню сигнализации – AL

Прибор оборудован двумя клеммами входа/выхода, которые могут быть запрограммированы четырьмя разными способами. Любая из клемм – первая или вторая – может быть установлена, согласно настройкам в меню P_1, для работы в качестве сигнального выхода.

Каждый выход, который работает как сигнальный, состоит из трех компараторов. Компараторы сортированы по логическим функциям согласно рисунку ниже.

Рис.9. Компараторы и логические функции

Компараторы C1, C2 и C3 относятся ко выходу K1, а компараторы C4, C5 и C6 ко выходу K2. Из рисунка 9 видно, что есть логическая функция между первыми двумя компараторами группы и их результатом и последним компаратором группы. Доступно два логических оператора: логическое сравнение – AND и логическое разделение – OR.

Логический выход может быть инвертирован или в нормальном положении. По умолчанию выход работает в нормальном режиме.

Таблица 7. Перечень комбинаций логических функций и положений выхода

Компаратор	123 – выход К1	Компаратор 456 – выход К2		
Логический оператор Значение		Логический оператор	Значение	
u_u	(C1 OR C2) OR C3	u_u	(C4 OR C5) OR C6	
u_n	(C1 OR C2) AND C3	u_n	(C4 OR C5) AND C6	
n_u	(C1 AND C2) OR C3	n_u	(C4 AND C5) OR C6	
n_n	(C1 AND C2) AND C3	n_n	(C4 AND C5) AND C6	
nor	нормальный логический выход	nor	нормальный логический выход	
inr	инвертированный логический выход	inr	инвертированный логический выход	

6.3.1. Определение компаратора

Каждый компаратор может быть установлен для работы с любым параметром из перечня, указанным в таблице 8. Выбранный параметр сравнивается – < или > чем выставленное значение. Для каждого компаратора есть три экрана в меню AL в режиме настроек. По умолчанию каждый компаратор выключен и отображен символом oFF.

Рис.8. Экраны выбора компараторов

На первом экране соответствующего компаратора выбирается сравниваемый параметр и определяется операция. Второй экран определяет уровень значения сравненного параметра с реальным значением. Третий экран используется для настройки времени продолжительности срабатывания сигнализации для активации выхода и минимального времени реакции выхода. Оба значения могут быть установлены в пределах от 0 ... 900 секунд.

Таблица 8. Перечень допустимых сигнальных событий

Символ	Описание	Символ	Описание		Символ	Описание
U 1	фазное напряжение в L1	U 3 THD	ТНD по напряжению в фазе L3	1	11	11-я гармоника по напряжению
U 2	фазное напряжение в L2	I 1 THD	ТНD по току в фазе L1		13	13-я гармоника по напряжению
U 3	фазное напряжение в L3	I 2 THD	ТНD по току в фазе L2		15	15-я гармоника по напряжению
U 1-2	линейное напряжение L1 – L2	I 3 THD	ТНD по току в фазе L3		17	17-я гармоника по напряжению
U 1-3	линейное напряжение L1 – L3	1 cosφ	соѕф в фазе L1		19	19-я гармоника по напряжению
U 2-3	линейное напряжение L2 – L3	2 cosφ	соѕф в фазе L2			гармоники по всем фазам
11	ток в L1	3 cosφ	соѕф в фазе L3		S	трехфазная полная мощность
12	ток в L2	Fr	частота сети		Р	трехфазная активная мощность
13	ток в L3	3	3-я гармоника по напряжению		L	трехфазная L реактивная мощность
١n	ток в N проводе	5	5-я гармоника по напряжению		С	трехфазная С реактивная мощность
U 1 THD	ТНD по напряжению в фазе L1	7	7-я гармоника по напряжению		A_P	трехфазная средняя активная мощность
U 2 THD	ТНD по напряжению в фазе L2	9	9-я гармоника по напряжению		123cosφ	трехфазный коэффициент мощности

7. Стандартный режим мониторинга

В стандартном режиме мониторинга прибор контролирует электрические параметры. Контролируемые параметры логически сгруппированы и отображаются в пределах одного экрана и сортированы по группам связанных экранов. Существует 8 групп, которые можно увидеть в разделе 7.6.

7.1. Операции и символьные обозначения

Дисплей прибора многофункциональный с символами, которые вводят и указывают отображаемую информацию. Передвижение между группами (уровнями) связанных экранов осуществляется нажатием кнопки ▲. Внутри (группы) уровня, подробные экраны просматриваются нажатием кнопки ▼. Уровни не закрытые, поэтому, когда достигнут последний экран текущего отображаемого уровня, другим нажатием на кнопку ▼ осуществляется переход на первый экран нового уровня.

С любого экрана на любом уровне можно вернуться на первый экран (фазное напряжение), нажав клавишу ESC.

7.2. Значения максимума и минимума

Для всех измеряемых параметров достигнутые максимальные значения сохраняются в памяти. Для нескольких параметров сохраняются и минимально измеренные значения. Для представления значения максимума необходимо сделать одно короткое нажатие на кнопку SET. Значения максимума отображаются символом ▲ перед отображаемыми значениями. Вторым нажатием на кнопку SET отобразятся значения минимума, если в данном параметре они доступны. Значения минимума отображаются символом ▼ перед отображаемыми значениями значения минимума отображаются символом ▼ перед отображаемыми значениями. Третьим нажатием на кнопку SET вернемся к текущим измерениям.

7.3. Средние значения

Для отображения средних значений фазовых токов, трехфазной полной мощности и трехфазной активной мощности необходимо перейти к экрану соответствующего параметра и дважды нажать на кнопку SET. Средние значения отобразятся символами ▲ и ▼ одновременно.

Среднее значение мощностей представлено четырьмя квадрантами и отображается символами ▲ и ▼. Для генерируемого среднего значения отобразится знак «минус» между символами ▲ и ▼.

7.4. Выход состояния сигнализации

Выходы могут работать в четырех состояниях. Сигнал на ЖК-дисплее является общим для всех и отличается в соответствии с приведенной ниже таблицей.

Параметр	Описание	Активированный	Деактивированный
In	Вход	K1 🔘	К1 ()
Out	Выход	K1 🔘	К1 ()
PuL	Импульсный выход	К1 Опри наличии импульса	К1 ()
AL	Выход сигнализации	К1 Омигающий	

7.5. Счетчики энергии

Анализатор ENA33LCD измеряет все виды энергий в направлениях потребления и генерации, поэтому есть шесть счетчиков разделенных на две группы. Первая группа из трех счетчиков (активная энергия, реактивная индуктивная энергия, реактивная емкостная энергия) предназначена для генерируемой энергии и представлена символом ▲, отображенным на первой линии общего числа энергии.

Вторая группа из трех счетчиков (активная энергия, реактивная индуктивная энергия, реактивная емкостная энергия) предназначена для потребляемой энергии и представлена символом **▼**, отображенным на первой линии общего числа энергии.

Примечание

Обнуление счетчиков энергии возможно через конфигурацию меню P_2 при помощи одновременного нажатия кнопок ▲ и ▼ или через ПК с помощью программного обеспечения PMS.

kWh

22

345

7.6. Экраны отображения

Значения каждого экрана легко определить с помощью использования стандартных ISO символов и значений параметров. Каждое отображаемое значение параметра указывается с его переменной.

8. Технические характеристики

Параметр	Значение
Напряжение питания	230 В АС, 50 Гц (+10%,-15%)
Частота	45 65 Гц
Границы измеряемого тока	0,01 5,3 A
Границы измеряемого напряжения L – N	0 300 B AC
Мощность потребления	1,5 BA
Частота дискретизации	6.4 кГц
Количество выходов / входов	2
Тип выходов	NPN транзистор свободный от потенциала оптически изолированный
Максимальное напряжение для выходного канала	24 B DC
Максимальная нагрузка для выходного канала	100 мА
Входной тип	оптически изолированный свободный от потенциала
Максимум напряжения для входного канала	24 B DC
Максимум для входного потребления	10 мА
Максимальная частота импульсного выхода	10 Гц
Длительность импульса	50 мс
Диапазон настройки пульса	1 500 Втч (Варч)
Коэффициент трансформации напряжения и тока	1 1500
Сохраняемые события	20 событий
Порт связи	RS485
Протокол связи	MODBUS RTU
Скорость связи	9,6 / 19,2 / 38,4 / 57,6 / 115 kBd
Класс перенапряжения	300 В категория III
Степень загрязнения	2
Температурный диапазон	-30°C +70°C
Передняя панель	96 х 96 мм
Вырезаемое окно	92 х 92 мм
Глубина	55 мм
Вес	620 г (включая упаковку)
Степень защиты	IP20 задняя панель / IP54 передняя панель
Стандарты	EN 61010-1, EN 60947-1, EN 61000-6-2, 2-4, 6-3